

DCW-003-1161004

Seat No.

M. Sc. (Sem. I) Examination

August - 2022

Mathematics: CMT - 1004

(Theory of Ordinary Differential Equation)

Faculty Code: 003

Subject Code: 1161004

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) Attempt any five questions from the following.

- (2) There are total ten questions.
- (3) Each question carries equal marks.
- 1 Answer the following:

 $7 \times 2 = 14$

- Define linear differential equation and linear homogeneous differential equation with an example.
- (2) Write the differential equation $y_1 = y_2 + \cos t$, $y_2 = y_1$ in the matrix form.
- (3) Find the general solution of y''' + 3y'' + 3y' + y = 0 on \mathbb{R} .
- (4) Define:
 - (a) Wronskin.
 - (b) Regular Singular Point.
- (5) Define Laplace transform of a function in \mathcal{H} and show that, it converges absolutely.
- (6) State, shifting property of Laplace transform for $z \in \mathbb{C}$.
- (7) Let A and B be $n \times n$ matrix and AB = BA then prove that, $\exp(A+B) = \exp(A) \cdot \exp(B)$.

2 Answer the following:

 $7 \times 2 = 14$

- (1) Define degree of a differential equation and linear differential equation with examples.
- (2) Find two linearly independent solutions of y'' y = 0.
- (3) State, the first fundamental theorem of calculus.
- (4) Locate and classify the singularities of $(t-1)^3 y'' + 2(t-1)^2 y' 7ty = 0.$
- (5) Define power series and Bessel's function.
- (6) Determine the largest interval of existence of the solution of the IVP for the equation : $y''' + (t^2 1)y = 0$ with y(-1) = 1, y'(-1) = 0, y''(-1) = -1.
- (7) Find the linearly independent solutions of y'' + y = 0 on \mathbb{R} .
- **3** Answer the following:

 $2 \times 7 = 14$

- (1) State, the condition of the solution of an initial value problem of a system of 1st order linear differential equation.
- (2) Solve initial value problem

$$y_1' = y_1 + y_2 + f(t), y_2' = y_1 + y_2 \text{ with } \begin{bmatrix} y_1(t_0) \\ y_2(t_0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

where f is a continuous function from I to \mathbb{R} , $t_0 \in I$.

4 Answer the following:

 $2 \times 7 = 14$

- (1) (a) Find $L^{-1}\left(\frac{3z+7}{z^2-2z-3}\right)$.
 - (b) Find $L(\sin ct)$.
- (2) Solve $y''' 3y' + 2y = 4e^{2t}$ with y(0) = 3 and y'(0) = 5 using Laplace transform.

DCW-003-1161004]

2

[Contd...

5 Answer the following:

- $2 \times 7 = 14$
- (1) Find the eigenvalues and eigenvectors of matrix

$$A = \begin{bmatrix} 2 & -3 & 3 \\ 4 & -5 & 3 \\ 4 & -4 & 2 \end{bmatrix}.$$

- (2) Prove that, the eigenvectors corresponding to the distinct eigenvalues of $n \times n$ matrix A are linearly independent in \mathbb{R}^n or \mathbb{C}^n .
- **6** Answer the following:

 $2 \times 7 = 14$

(1) Justify whether the Legendre's equation

$$(1-t^2)y''-2ty'+n(n+1)y=0$$
; (where *n* is constant)

has a solution or not.

(2) Let A be the constant 2×2 complex matrix then prove that, there exists a constant 2×2 non-singular matrix

$$T$$
 such that $T^{-1}AT$ has the form $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$.

7 Answer the following:

 $2 \times 7 = 14$

- (1) Find the particular solution of $y'' + y = \tan t$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; y(0) = 0 and y'(0) = 0.
- (2) Define Legendre's polynomial and compute 1^{st} , 2^{nd} , 3^{rd} , 4^{th} and 5^{th} degree.
- 8 Answer the following:

 $2 \times 7 = 14$

- (1) State and prove, Gronwall's inequality.
- (2) Define convolution. Further show that, if $f \in \mathcal{H}$ and

$$\frac{f(t)}{t} \in \mathcal{H}$$
 then $L\left(\frac{f(t)}{t}\right) = \int_{z}^{\infty} L(f(w)) dw$ for which $Im(w)$

is bounded and $Re(w) \rightarrow \infty$.

DCW-003-1161004]

9 Answer the following:

 $2 \times 7 = 14$

- (1) State and prove, Abel's theorem.
- (2) Find the fundamental matrix of y' = A(t)y on $(-\infty, \infty)$, where $A(t) = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$, $\forall t \in (-\infty, \infty)$ and find $\exp(tA)$; $\forall t \in (-\infty, \infty)$.
- 10 Answer the following:

- $2 \times 7 = 14$
- (1) (a) Define second shifting theorem.
 - (b) Find $L(e^{-t})(z)$ using definition of Laplace transform.
- (2) Prove that, if $a_0(t), a_1(t), a_2(t)$ which are analytic at t_0 and t_0 is a regular singular point of $a_0(t)y'' + a_1(t)y' + a_2(t) = 0$ then given equation can be written in the form $(t-t_0)^2y'' + (t-t_0)\alpha(t)y' + \beta(t)y = 0$ for some function $\alpha(t)$ and $\beta(t)$, which are analytic at t_0 and not all $\alpha(t_0), \beta(t_0)$ and $\beta'(t_0)$ are zero.